
C++ Toolkit Book Retrieve the Source Code

3-1

3. Retrieve the Source Code
Created: April 1, 2003
Updated: February 20, 2004

Overview
The overview for this chapter consists of the following topics:

• Introduction

• Chapter Outline

Introduction
The first step in working with the C++ Toolkit is obtaining the source code. Source code can be obtained
using CVS for in-house users or FTP for external users. This chapter describes how to setup the CVS client
to obtain the source code. In addition, this chapter describes the use of scripts that can simplify obtaining
only the necessary source code components.

Chapter Outline
The following is an outline of the topics presented in this chapter:

• CVS Source Code Retrieval for Public Read-only Access

• CVS Source Code Retrieval for In-House Users with Read-Write Access

• NCBI CVS Tree Contents

• Setting up CVS client

• CVS Retrieval under Unix

• CVS Retrieval of the C++ Toolkit

• Checking Out the Internal NCBI C++ Toolkit Source Tree

• Checking Out the Production NCBI C++ Toolkit Source Tree

C++ Toolkit Book Retrieve the Source Code

3-2

• cvs_core.sh: Retrieving core components

• cvs_core.sh: Retrieve Only the Portable and Core Components

• Path Note for Scripts

• cvs_core.sh Arguments

• Contents of the Portable Core Source Tree

• Supplement Contents Using the cvs_core.sh Options

• cvs_core.sh MSVC++-related Options

• MSVC++ Project File Conversion Tools

• Shell Scripts

• Transition to single-configuration project files

• import_project.sh: Retrieve Source for an Existing Project

• update_core.sh: Update the Portable and Core Components

• update_projects.sh: Update Source for Specific Projects

• New Projects and New Modules

• new_project.sh: Starting a New Project Outside the C++ Toolkit Tree

• Creating a New Project Inside the C++ Toolkit Tree

• Template Source Files for New Modules

• Using CVS on MS Windows in NCBI

• Using CVS on Mac OS in NCBI

• Installing and Configuring MacCVS Pro

• Installing and Configuring maccvs (GNU CVS port)

• FTP Retrieval

• Source Tree Structure Summary

C++ Toolkit Book Retrieve the Source Code

3-3

CVS Source Code Retrieval for Public Read-only Access
The public CVS server is available, which contains the public part of the C++ Toolkit. To use it,
follow exactly the in-house CVS usage instructions with two exceptions:

1. The CVSROOT env. variable should be set to:
:pserver:anoncvs@anoncvs.ncbi.nlm.nih.gov:/vault

2. Use empty password to login:
> cvs login
 Logging in to :pserver:anoncvs@anoncvs.ncbi.nlm.nih.gov:/vault
 CVS password: <just press ENTER here>

For details on checking out the production CVS tree see the section Checking Out the Pro-
duction NCBI C++ Toolkit Source Tree.

CVS Source Code Retrieval for In-House Users with Read-Write Access
For a detailed description of the CVS utility see the CVS online manual or run the commands
"man cvs" or "cvs --help" on your Unix workstation.

The following is an outline of the topics presented in this section. Select the instructions
appropriate for your development environment.

• NCBI CVS Tree Contents

• Setting up CVS client

• CVS Retrieval under Unix

• CVS Retrieval of the C++ Toolkit

• Checking Out the Internal NCBI C++ Toolkit Source Tree

• Checking Out the Production NCBI C++ Toolkit Source Tree

• cvs_core.sh: Retrieving core components

• cvs_core.sh: Retrieve Only the Portable and Core Components

• Path Note for Scripts

• cvs_core.sh Arguments

• Contents of the Portable Core Source Tree

• Supplement Contents Using the cvs_core.sh Options

• cvs_core.sh MSVC++-related Options

http://www.cs.utah.edu/csinfo/texinfo/cvs/cvs_toc.html

C++ Toolkit Book Retrieve the Source Code

3-4

• MSVC++ Project File Conversion Tools

• Shell Scripts

• Transition to single-configuration project files

• import_project.sh: Retrieve Source for an Existing Project

• update_core.sh: Update the Portable and Core Components

• update_projects.sh: Update Source for Specific Projects

• New Projects and New Modules

• new_project.sh: Starting a New Project Outside the C++ Toolkit Tree

• Creating a New Project Inside the C++ Toolkit Tree

• Template Source Files for New Modules

• Using CVS on MS Windows in NCBI

• Using CVS on Mac OS in NCBI

• Installing and Configuring MacCVS Pro

• Installing and Configuring maccvs (GNU CVS port)

NCBI CVS Tree Contents
The NCBI C++ Toolkit CVS repository contains all source code, scripts, utilities, tools, tests and
documentation required for a variety of builds (e.g., "Debug" and "Release" versions of the
Toolkit) under the major classes of operating system (Unix, MS Windows and Mac OS). The

CVS tree has the same global and project-level organization of the source tree yet contains the
code needed for all supported builds.

Setting up CVS client
CVS client installation instructions are available on separate pages for MS Windows and Mac OS
systems. Here are the instructions for setting up CVS client on UNIX:

1. Set CVSROOT env.variable to: :pserver:${LOGNAME}@cvsvault:/src/NCBI/vault.ncbi.

Note that for NCBI Unix users, this may already be set if you specified developer for the
facilities option in the .ncbi_hints file in your home directory.

2. Run the command: cvs login You will be asked for a password -- enter the word

allowed. This command will record your login info into ~/.cvspass file (so you would not
have to login into CVS in the future, ever). You may need to create an empty~/.

C++ Toolkit Book Retrieve the Source Code

3-5

cvspassfile before logging in as some CVS clients apparently just cannot create it
for you.If you get an authorization error, then send e-mail with the errors to cpp-
core.

3. If you have some other CVS snapshot which was checked out with old value of CVS-
ROOT, you should commit all your changes first, then delete completely the old snapshot
dir and run: cvs checkout to get it with new CVSROOT value.

4. Now you are all set and can use all usual CVS commands.

NOTE: When you are in a directory that was created with cvs checkout by another person,

a local ./CVS/ subdirectory is also created in that directory. In this case, the cvs command ignores
the current value of the CVSROOT environment variable and picks up a value from ./CVS/Root file.

Here is an example of what this Root file looks like:
:pserver:username@cvsvault:/src/NCBI/vault.ncbi

Here the username is the user name of the person who did the initial CVS checkout in that
directory. So CVS picks up the credentials of the user who did the initial check-in and ignores the
setting of the CVSROOT environment variable, and therefore the CVS commands that require

authorization will fail. There are two possible solutions to this problem:

1. Create your own snapshot of this area use the cvs get command.

2. Impersonate the user who created the CVS directory by creating in the ~/.cvspass file another string
which is a duplicate of the existing one, and in this new string change the username to that of the user
who created the directory. This hack will allow you to work with the CVS snapshot of the user who
created the directory. However, this type of hack is not recommended for any long term use as you
are impersonating another user.

CVS Retrieval under Unix
The following topics are discussed in this section:

• CVS Retrieval of the C++ Toolkit

• Checking Out the Internal NCBI C++ Toolkit Source Tree

• Checking Out the Production NCBI C++ Toolkit Source Tree

• cvs_core.sh: Retrieving core components

• cvs_core.sh: Retrieve Only the Portable and Core Components

• Path Note for Scripts

• cvs_core.sh Arguments

• Contents of the Portable Core Source Tree

C++ Toolkit Book Retrieve the Source Code

3-6

• Supplement Contents Using the cvs_core.sh Options

• cvs_core.sh MSVC++-related Options

• MSVC++ Project File Conversion Tools

• Shell Scripts

• Transition to single-configuration project files

• import_project.sh: Retrieve Source for an Existing Project

• update_core.sh: Update the Portable and Core Components

• update_projects.sh: Update Source for Specific Projects

• New Projects and New Modules

• new_project.sh: Starting a New Project Outside the C++ Toolkit Tree

• Creating a New Project Inside the C++ Toolkit Tree

• Template Source Files for New Modules

CVS Retrieval of the C++ Toolkit
This section discusses the methods of checking out the entire CVS tree or just the necessary
portions. An important point to note is that the whole NCBI C++ tree is very big because it con-
tains a lot of internal user projects. There are also numerous platform-specific files, and even
whole sub-trees, which you will never need unless you work on other platforms. Therefore it is
frequently sufficient, and in fact, usually advisable, to retrieve only those files of direct interest
using the shell scripts in the $NCBI/c++/scripts directory.

The auxiliary scripts cvs_core.sh and cvs_core.bat checkout only the core (basic and
portable) NCBI C++ Toolkit sources for a desired platform. A similar auxiliary script exists to
import the source from a single project (import_project.sh). To facilitate the creation of a new
project, use the script (new_project.sh), which generates new directories and makefiles for the
new project from templates. The script also checks out a specified sample application from the
CVS tree that may be adapted for the new project or built directly as a demonstration.

The following additional topics are discussed in this section:

• Checking Out the Internal NCBI C++ Toolkit Source Tree

• Checking Out the Production NCBI C++ Toolkit Source Tree

• cvs_core.sh: Retrieving core components

• cvs_core.sh: Retrieve Only the Portable and Core Components

• Path Note for Scripts

C++ Toolkit Book Retrieve the Source Code

3-7

• cvs_core.sh Arguments

• Contents of the Portable Core Source Tree

• Supplement Contents Using the cvs_core.sh Options

• cvs_core.sh MSVC++-related Options

• MSVC++ Project File Conversion Tools

• Shell Scripts

• Transition to single-configuration project files

• import_project.sh: Retrieve Source for an Existing Project

• update_core.sh: Update the Portable and Core Components

• update_projects.sh: Update Source for Specific Projects

Checking Out the Internal NCBI C++ Toolkit Source Tree
You can checkout the entire internal NCBI C++ source tree from CVS to your local directory (e.g.,
foo/c++/) just by running:
cd foo
cvs checkout -d c++ internal/c++

Alternatively, you can get a copy of the sources using the CVS get command:
cvs get -d c++ internal/c++

Caution:Be aware that sources checked out through the internal CVS tree have the latest
sources and are different from the public release that is done at periodic intervals. As such these
sources are relatively unstable, "development" sources, and are not guaranteed to work properly
or even compile. Use these sources at your own risk (and/or to apply patches to stable releases).
The sources are usually better by the end of day and especially by the end of the week (like Sun-
day evening).

Checking Out the Production NCBI C++ Toolkit Source Tree
Besides the internal NCBI C++ source tree, there is the C++ Toolkit "production" source tree that
has been added to the public CVS server area. This tree contains stable snapshots of the "devel-
opment" C++ Toolkit tree. Please note that these sources are lagging behind, sometimes months
behind the current snap-shot of the sources.

You can checkout the whole "production" NCBI C++ source tree from the public CVS server
area to your local directory just by running:

cvs checkout -r ProductionBuild_YYYYMMDD -d c++ production/c++

or
cvs get -r ProductionBuild_YYYYMMDD -d c++ production/c++

where symbolic tag ProductionBuild_YYYYMMDD is listed in the corresponding "snapshot-
info" file located under c++/patches/

For example, there is only one "snapshot-info" file, "ORIGINAL.txt", and it lists the tag as:

C++ Toolkit Book Retrieve the Source Code

3-8

cvs checkout -r ProductionBuild_20031212 -d c++ production/c++

or
cvs get -r ProductionBuild_20031212 -d c++ production/c++

Caution:If you checkout the current state of the "production" C++ Toolkit tree (i.e. if you do
not use the sym.tag), then there is a risk that you get unbuildable set of sources.

cvs_core.sh: Retrieving core components
The following topics are discussed in this section:

• cvs_core.sh: Retrieve Only the Portable and Core Components

• Path Note for Scripts

• cvs_core.sh Arguments

• Contents of the Portable Core Source Tree

• Supplement Contents Using the cvs_core.sh Options

• cvs_core.sh MSVC++-related Options

• MSVC++ Project File Conversion Tools

• Shell Scripts

• Transition to single-configuration project files

cvs_core.sh: Retrieve Only the Portable and Core Components
Usage Summary (path note):
cvs_core.sh <dir> [--with-<feature>]... [--without-<feature>]... [--date=<date>] [--
<platform>] [--<cvstree>]

Default settings:
cvs_core.sh <dir> --with-cvs --date=<current> -all --internal

The arguments to cvs_core.sh are discussed in the cvs_core.sh Arguments subsection.
For the major three platforms, a typical invokation for "core" source retrieval is shown below:

Unix:

cvs_core.sh <dir> --unix

MS-Win:

cvs_core.sh <dir> --msvc --with-objects --without-dizzy

MacOS:

cvs_core.sh <dir> --mac --with-objects

Note:dizzy is the name of a Microsoft Terminal Server on the internal NCBI network and as
such the --with-dizzy option would apply to internal NCBI users only.

C++ Toolkit Book Retrieve the Source Code

3-9

The NCBI C++ Toolkit CVS repository contains the source for many features and extension
beyond the core of portable functionality. Often one wants to obtain a set of Toolkit sources that
are free of the non-portable elements, and the cvs_core.sh script performs this task across the
range of supported platforms. Options to the basic command allow the developer to further tailor
the retrieved source by including (or excluding) portions of the Toolkit not checked out by default.

Path Note for Scripts
If the Toolkit is installed on your machine at $NCBI, these scripts should be invoked as:$NCBI/c+
+/scripts/<script_name> if that directory is not in your $PATH.

cvs_core.sh Arguments
Table 1 describes the arguments of cvs_core.sh, along with their default values. Only the target
directory is mandatory. The optional --with/without-<feature> argument pairs include or exclude
portions of the Toolkit from the checked-out source. While both members of the pair may appear
on the command line, only the final one controls the script's behavior. Certain settings are mean-
ingful only for certain <platform>s (most often with respect to MS Windows platforms).

Table 1. cvs_core.sh Arguments

Argument Description Permitted Values

<dir> Path to where tree will be checked
out. This argument is required.

Valid writable directory name (cannot
exist already); name cannot start
with "-"

<platform> Obtain sources for the specified plat-
form(s).

unix (Unix systems) msvc (for Microsoft
Visual C++ environment) mac (Mac-
intosh systems) cygwin (Red Hat's
Cygwin UNIX environment for MS
Windows) all (all systems) default:
all

--with-cvs Include CVS-related directories in the
resultant tree.

Even if this flag is not present, it
defaults to ON which means that the
CVS-related directories are in the
resultant tree (unless overriden by --
without-cvs flag).

--without-cvs Exclude CVS-related directories from
the resultant tree.

If not present, this flag has no affect on
the behavior of --with_cvs. If
present, it excludes CVS-related
directories from the resultant tree,
and instead does a CVS "export" as
of the date specified by the date
parameter.

--date Checkout as of the specified date. If the --date flag is missing the current
timestamp is used.

--with-objects Generate ASN.1 serialization code in
the objects/ directory.

If the --with-objects flag is present, the
objects, object manager and object
tools are checked out and serializa-
tion code is generated from the

C++ Toolkit Book Retrieve the Source Code

3-10

Argument Description Permitted Values

ASN.1 specifications. If the --with-
objects flag is not present, the
objects, object manager and object
tools are still checked out (unless
overriden by the --without-objects
flag) but no serialization code is
generated. If the --without-objects
flag is present, then the object com-
ponenets will not be checked out.
(Unix platforms: the code generation
can be done later, during the build)

--without-objects Do not check out the objects, object
manager or object tools directory
or generate ASN.1 serialization
code.

If not present, this flag has no affect
and the behavior for --with-objects
applies. That is, unless explicitly
turned off by providing this argument
the objects, object manager and
object tools are always checked out.
The main purpose of this flag is to
ensure that the object components
are not checked out.

--with-ctools Checkout core projects responsible
for working together with the NCBI
C Toolkit (ctools/ directory).

If not present, it defaults to still check-
ing out the ctools/ directory unless
overriden by the --without-ctools
flag.

--without-ctools Do not checkout core projects
responsible for working together
with the NCBI C Toolkit.

If not present, this flag has no affect
and the behavior for --with-ctools
applies. That is, unless explicitly
turned off by providing --without-
ctools, the ctools are always
checked out. The main purpose of
this flag is to ensure that the ctools
components are not checked out.

--with-gui Checkout projects that depend on
wxWindows.

If not present, it defaults to still check-
ing out the gui components unless
overriden by the --without-gui flag.

--without-gui Do not checkout projects that depend
on wxWindows.

If not present, this flag has no affect
and the behavior for --with-gui
applies. That is, unless explicitly
turned off by providing --without-gui,
the gui components are always
checked out. The main purpose of
this flag is to ensure that the gui
components are not checked out.

C++ Toolkit Book Retrieve the Source Code

3-11

Argument Description Permitted Values

--<cvstree> Whether to include internal NCBI
components of the CVS tree.

The --<cvstree> is replaced by either --
production or --internal. If --
internal is specified, the internal
CVS tree branch for NCBI users is
checked out. If --production is
specified, the production CVS tree
branch for non-NCBI users is
checked out. If not specified, this
option defaults to --internal.

The following have an affect only for <platform>={msvc,all}
--with-vc-cfgs [=<selection>] Get multi-configuration Microsoft

Visual C++ project files.
This can take three values: all (get all

project files), inhouse (get only the
NCBI inhouse project files) and
none (get no project files). The
default is all.

--without-vc-cfgs Do not get multi-configuration
Microsoft Visual C++ project files.

Default: OFF (ON is the same as --
with-vc-cfgs=none) Note:--without-
vc-cfgs is not compatible with --
without-dizzy

--with-dizzy Retain paths to \\DIZZY\ in Microsoft
Visual C++ project files.

default: OFF. Note that \\DIZZY is the
name of a Microsoft Terminal Server
accessible to internal NCBI users. If
this option is not specified, the
default of OFF means that there
wont be paths to \\DIZZY within the
project file.

--without-dizzy Remove paths to \\DIZZY\ in
Microsoft Visual C++ project files.

default: OFF Note: --without-dizzy is
not compatible with --without-vc-
cfgs. \\DIZZY is the name of a
Microsoft Terminal Server accessi-
ble to internal NCBI users.

Contents of the Portable Core Source Tree
In this section, all paths and filenames are in the CVS tree and unless otherwise specified, should
be taken as relative to the common root $CVSROOT/internal/c++.

Common Source: Table 2 lists those which are always recursively checked out, regardless of
the arguments to cvs_core.sh:

Table 2. List of directories always checked out

doc
include/corelib src/corelib
include/connect src/connect/test

C++ Toolkit Book Retrieve the Source Code

3-12

include/serial src/serial
include/cgi src/cgi
include/html src/html
include/util src/util
include/hello src/hello
include/app src/app

Supplement Contents Using the cvs_core.sh Options
Platform-Specific Source In addition to the above common source, the various <platform> options
will populate the remainder of the checked-out CVS source tree differently. At present a laundry-
list for each platform option is not provided here, however you may view the source to examine
the most current status. In general, the platform and argument-sensitive parts of the source
reside in the directories shown in Table 3.

Table 3. Directories containing argument sensitive parts

compilers
connect/daemons
connect/mitsock
include/dbapi src/dbapi
scripts

Feature-Specific Source The --with/--without-<feature> options enable or inhibit portions of
the CVS tree from being included in the checked-out out source tree. Consult Table 4 to identify
where a certain option affects the source tree.

Table 4. Directories affected by enabling/disabling the --with/--without option

Feature Affected Directories

cvs */CVS
ctools include/ctools, src/ctools, compilers
dizzy compilers
gui include/gui, src/gui, compilers
objects include/objects/*, src/objects/*, compilers, scripts, src
vc-cfgs compilers

cvs_core.sh MSVC++-related Options
A project file, checked out by script cvs_core.sh, is by default expanded to contain all 6 con-

figurations (Debug, DebugMT, DebugDLL, Release, ReleaseMT, ReleaseDLL). However, for a
developer this might not be very convenient, as the resulting project file (if modified) cannot be
checked in back to the CVS repository. Therefore, we provide an option (to be used by Toolkit
developers), which allows to check out C++ Toolkit "as is", i.e. without expanding the project files:

http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/lxr/source/scripts/cvs_core.sh

C++ Toolkit Book Retrieve the Source Code

3-13

$ cvs_core.sh ... --without-vc-cfgs

Note that in this case only one configuration, namely DebugDLL, will be available in the
projects, and the batch file all.bat (even if started without arguments) will build only this one con-
figuration.

Suppose that you want to build only one configuration (e.g. ReleaseDLL). You can do it in
either of the following ways:

1. Checkout the Toolkit sources using cvs_core.shwithout option --without-vc-cfgs.

2. Move entire Toolkit tree to your PC.

3. Run "all.bat ReleaseDLL" to build the Toolkit. In this case you are able to build other

configuration(s) as well (e.g. "all.bat Debug").

or:

1. Checkout the Toolkit sources using cvs_core.shwith option --without-vc-cfgs.

2. Apply script one2one.sh recursively for all project files:
$ find . -name "*.dsp" -exec ./one2one.sh {} ReleaseDLL \;

3. Move entire Toolkit tree to your PC.

4. Run "all.bat" to build the Toolkit.

Another recently added MSVC-specific option is --without-dizzy, which is propagated to the
script one2all.sh, called to build 6 configurations in every project file; therefore, this option cannot
be combined with --without-vc-cfgs.

Note that although is it acceptable to specify default behavior with --with-vc-cfgs and --with-
dizzy, we strongly recommend not to use these forms of the options.

MSVC++ Project File Conversion Tools
This manual assumes that the UNIX-like environment is used to prepare and manage MSVC++
project files, which in turn can be used to build NCBI C++ Toolkit by MSVC++ Developer Studio.
The following tools must be available in order for the conversion scripts to work: cat, cp, diff,
echo, egrep, expr, find, grep, head, mv, rm, sh, tail, test, touch, and tr.

The idea behind the automatic project file conversion is that usually developer works only
with some fixed configuration (e.g. debug, single-threaded), yet he/she must keep all other con-
figurations in-sync. Hereby we provide the developer with the means to work with (and make
changes to) a single configuration at any given moment of time. Then, when the build process is
about to occur, all other deficient configuration(s) can be generated automatically from that fixed
(template) configuration.

There are some limitations to the above scheme:

• The per configuration dependencies are not supported, they are ignored and excluded
from the resulting project file, with warning printed.

C++ Toolkit Book Retrieve the Source Code

3-14

• If libraries or object files are explicitly included in the project file list, they usually refer to
fixed file placements (e.g. src\connect\DebugMT\ncbi_socket.obj), i.e. bound to the particu-
lar configuration it was built with. Therefore, you must never use the explicit inclusion of
this kind when creating your single-configuration (template) project files. Instead, use
workspace file (.dsw) dependency mechanism to link with such libraries and object files,
and use linker options (library list) without explicit paths.

The following additional topics are discussed in this section:

• Shell Scripts

• Transition to single-configuration project files

Shell Scripts
All the work of managing the project files is done by using of one or more of the following shell
scripts:

• all2one.sh - looks through the given project file, prints out available configurations, and
allows to extract any of those. If there is only one configuration, the script does nothing.
Special care is taken to first check the project file consistency to avoid corrupting the vital
project file structure. Note, however, that the warning is printed if the project file contains
per configuration issues, which cannot be handled in a graceful way, and thus ignored.
Input file can be in either DOS or UNIX text file format (respectively, with or without CR
(carriage return) incorporated before LF (life feed) at line ends). Output file is always in
UNIX text file format, which is suitable for CVS repository. Note: Aside the project file
name, the second argument can be given to the script. This argument is used as a name
of configuration to extract without interactive inquiry. If the specified configuration is not
found, the script aborts with an error message.

• one2all.sh - takes a single-configuration project file (perhaps the one created by all2one.
sh and derives multi-configuration project file containing 3 production configurations:
Release, ReleaseMT, and ReleaseDLL; and 3 debug configurations:Debug, DebugMT,

and DebugDLL. One option, --without-dizzy, can precede the file name. If specified, then

the C compiler, resource compiler and linker options, which refer to additional paths,
involving \\DIZZY\, are removed. Output file is always produced in DOS text file format
(that is suitable for immediate consumption by MSVC++), whereas input file can be in
either UNIX or DOS format. Note: There is one additional argument, which is reserved for
internal use only. When given as 2, only DebugDLL and ReleaseDLL configurations are

placed to the output file. When given as 4, only the following four configurations appear:
Debug, DebugMT, Release, and ReleaseMT.

C++ Toolkit Book Retrieve the Source Code

3-15

• one2one.sh - takes two arguments: single-configuration project file name and one of
standard configuration names (Debug, DebugMT, DebugDLL, Release, ReleaseMT,

ReleaseDLL) and replaces the given project file with a new one, having the requested

configuration. In case of non-standard configuration name, an error results. Being an 'inter-
face' script to both all2one.sh and one2all.sh, this scipt can accept one option, --without-
dizzy, as described above. Output file is created in UNIX text file format.

• include.sh - takes an optional argument list, each entry of which is a relative path to
include file directory (default is the standard NCBI C++ Toolkit include directory). The script
then recursively looks through all project files, and tries to update compiler switches with
the given directory list. Directories, already specified in project files, are either replaced
(when the new directory resembles the old one), or added to the current list of include
directories. The main purpose of the script is to eliminate "global" configuration through
"Tool/Options", which is otherwise required to specify include file directories. Generated
paths to include files are always relative to the project file. The script is to be used from the
msvc_prj directory each time, when the project file subtree is a kind rearranged and must
be updated in the CVS. Therefore, the project files are always produced in UNIX text file
format.

• commit.sh - control script for use from inside the CVS upon each commit to ensure that
the project being checked in contains one fixed configuration only (namely, DebugDLL).

This script as well checks that the file being committed is in UNIX text file format, and
rejects if not. The extensions (and only in directories specified in DIRLIST parameter, as
described below) checked are:.dsw, .dsp, .bat. No explicit call to this script is ever neces-
sary: it is entirely internal to CVS and transparent for the user. Additional functionality has
been added to this script: if it detects that the file being committed contains paths either to
standard NCBI C Toolkit include files/libraries, or wxWindows include files/libraries, then
the paths are expanded to specify both relative (i.e. local) and absolute (i.e. via \\DIZZY
\public\ncbi) locations, thus making possible to build the project using either local or pre-
built libraries. We require that if a toolkit is used locally (i.e. not via \\DIZZY\public\ncbi),
then the upper-level directory of the toolkit has to be placed at the same level as the NCBI
C++ Toolkit top-level directory. We reserve that wxwin and ncbi subdirectories, when
appear in the same parent directory as cxx, contain wxWindows and NCBI C Toolkit corre-
spondingly. Click here to know how to use the wxWindows package in these requirements.
One can later remove absolute references to \\DIZZY\ using option --without-dizzy with
either one2all.sh, or one2one.sh.

C++ Toolkit Book Retrieve the Source Code

3-16

Please note that the above tools are not project file generation tools, but rather the project
file conversion tools. That is, the resulting project file is correct if and only if the source
project file is. When a project file gets converted to a single-configuration template, all the
compiler switches and definitions, as well as other vital environment, have to be defined in a
right way.

DOS batch file all.bat can generate all projects in a batch mode, provided that msdev.exe is
in your PATH. As an argument to the batch file you can specify either ALL (or no arguments

at all), or any combination of Debug, DebugMT, DebugDLL, Release, ReleaseMT,

ReleaseDLL to build either all available, or particular configuration(s) respectively. You can

always use MSVC++ Developer Studio (just load workspace file ncbi_cpp.dsw) to build the
Toolkit in the interactive manner.

Transition to single-configuration project files
This step applies only once, when all current project files are converted to single-configuration
ones, which later can be automatically expanded back to multi-configuration project files, as
required for (production and/or regular) builds.

1. Check out the MSVC++ project files and tool scripts from internal/c++/compilers/msvc_prj
directory:
$ mkdir ~/msvc_prj; cd ~/msvc_prj
$ cvs co -d . internal/c++/compilers/msvc_prj

2. Apply the following command to convert multi-configuration project files to single-
configuration project files:
$ find . -name "*.dsp" -print -exec ./all2one.sh {} \;

For each project file choose the configuration (among available), which was tested, and
known to work. Note that many project files were created automatically by MSVC++, and
contain 2 or more configurations, but in most cases only one (notably: Debug) was cus-

tomized to work and to build this particular project, the others are just dummies.

3. Be sure that the process completed successfully and then delete backup copies:
$ find . -name "*.dsp.bak" -exec rm -f {} \;

4. You may wish to use the script one2one.sh for converting all project files to standard
single configuration DebugDLL, if configurations, different from DebugMT, have been

chosen in step 2 above:
$ find . -name "*.dsp" -print -exec ./one2one.sh {} DebugMT \;

5. Check out CVSROOT directory (this is an administrative directory used to control the
entire CVS tree):
$ mkdir ~/myCVSROOT; cd ~/myCVSROOT
$ cvs co CVSROOT

C++ Toolkit Book Retrieve the Source Code

3-17

6. Chdir to the checked out copy of CVSROOT:
$ cd CVSROOT

7. Install (by copying and giving execution permissions) the following scripts in CVSROOT
directory:
$ (cd internal/c++/compilers/msvc_prj; cp commit.sh all2one.sh ~/myCVSROOT)
$ chmod a+x commit.sh all2one.sh
$ cat >> checkoutlist
 commit.sh
 all2one.sh
<press Ctrl-D>
$ cat >> commitinfo
$ CVSROOT/CVSROOT/commit.sh
<press Ctrl-D>

8. Make sure that the files checkoutlist and commitinfo contain only one entry per each shell
script, delete any other entries if they exist.

9. Edit script commit.sh so that the line starting from DIRLIST= would contain a list of direc-
tories, delimited by spaces, relative to CVS tree origin, and which must be checked
against for having single-configuration project files only.

10. Now check in the changes made in CVSROOT directory back to the CVS repository:
$ cvs add commit.sh all2one.sh
$ cvs commit -m "MSVC++ Project File Control Added"

You should see message, saying that the CVS administrative directory is being rebuilt.
Erase local copy of CVSROOT directory.

11. Now chdir back to checked out copy of directory internal/c++/compilers/msvc_prj, which
now should contain single-configuration projects only. You can commit the projects back
to the CVS. This is a bit tricky, as formerly the project files were kept in binary form, and
now they have to be stored in a native text file format. The easiest way of workaround is
to do the following:
$ (cd $CVSROOT/internal/c++/compilers; mv msvc_prj msvc_prj.old)
$ find . -name CVS -exec rm -rf {} \;
$ cvs import -m "New projects" internal/c++/compilers/msvc_prj NCBI Exp

12. Erase the local copy of project file directory. If you wish to work further with projects, you
should re-check them out again to ensure that everything is connected back to the reposi-
tory in a right way.

import_project.sh: Retrieve Source for an Existing Project
Usage Summary (path note):

import_project.sh <cvs_tree_path> [builddir]

C++ Toolkit Book Retrieve the Source Code

3-18

In many cases, you work on your own project which is a part of the NCBI C++ tree, and you
do not want to check out, update and rebuild the whole NCBI C++ tree. -- Instead, you just want
to use headers and libraries of the pre-built NCBI C++ Toolkit to build your project.

The shell script import_project.sh will checkout your project's src and include directories
from CVS, and it will create a (temporary) makefile based on the project's customized makefile.
This makefile will also contain a reference to the pre-built NCBI C++ Toolkit.

For EXAMPLE:
import_project.sh hello

will check out the whole hello demo project from the NCBI C++ tree (internal/c++/{src,

include}/hello/), and create a makefile Makefile.hello_app that uses the project's customized
makefile Makefile.hello.app. Now you can just go to the created working directory internal/c++/
src/hello/ and build the demo application hello.cgi using:

make -f Makefile.hello_app

update_core.sh: Update the Portable and Core Components
Usage Summary (path note):

update_core.sh [--no-projects] [<dirs>]

Once you have obtained the core C++ Toolkit sources, with cvs_core.sh or otherwise, the
local copies will become out of sync with the master CVS repository contents when other devel-
opers commit their changes. update_core.sh will update your local core source tree with any
changed files without the side-effect of simultaneously checking out non-core portions of the tree.
Subdirectories */CVS and */internal do not get updated by this script.

The --no-projects switch excludes any Windows or MacOS project files from the update.

Specifically, those subdirectory names of the form *_prj are skipped during the update when this
flag is set.

The list [<dirs>], when present, identifies the set of directories relative to the current directory
to update. The default list of updated directories is:

• .

• compilers

• doc

• include

• scripts

• src

Note that the default list is not pushed onto a user-supplied list of directories.

update_projects.sh: Update Source for Specific Projects
Usage Summary (path note):

update_projects.sh <project-list> [<directory>]

C++ Toolkit Book Retrieve the Source Code

3-19

The script update_projects.sh facilitates work with those projects not in the core C++ tree.
Because the source code and makefiles are distributed in more than one subdirectory of $CVS-
ROOT /internal/c++, this script assembles the set of required files and places them in your local C
++ source tree.

The list of projects to obtain and/or update appear in <project-list>, formatted according to the
simple syntax used by the configure script. Project aliases and influencing how CVS recurses into
subdirectories are among the options available.

This script supports two modes of operation:

1. New C++ Source Tree: If you specify a directory name, it will create the directory if nec-
essary and check the specified portion of the C++ tree out into it, along with any addi-
tional infrastructure needed for the build system to work. (If the directory already exists, it
must be empty.) It will then optionally configure and build the new tree.

2. C++ Source Tree Exists: If you run it from the top level of an existing checkout of the C++
source tree, it will update the sources and headers for the specified projects. It will then
optionally reconfigure and rebuild the tree.

In either mode, if <project-list> contains neither a directory nor an extension, the script will
add the extension .lst and look in the "system" directory -- which is either internal/projects subdir
of update_projects.sh's dir or (if no such dir exists)$NCBI/c++/scripts/internal/projects.

New Projects and New Modules
A more complete discussion of how to begin a new project can be found on the"New Projects"
page.

The following topics are discussed in this section:

• new_project.sh: Starting a New Project Outside the C++ Toolkit Tree

• Creating a New Project Inside the C++ Toolkit Tree

• Template Source Files for New Modules

new_project.sh: Starting a New Project Outside the C++ Toolkit Tree
Usage Summary (path note):

new_project.sh <name> <type> [builddir]

This script will create a startup makefile for a new, from-scratch project called "name" which
uses the NCBI C++ Toolkit (and possibly the C Toolkit as well). For new libraries, type=lib while
for new applications type=app.

Sample code will be included in the project directory for new applications. Different samples
are available for type=app[/basic] (a command-line argument demo application based on the
corelib library), type=app/cgi (for a CGI or Fast-CGI application), type=app/objmgr (for an

application using the Object Manager) and type=app/objects (for an application using ASN.1
objects).

You will need to slightly edit the resultant makefile to:

C++ Toolkit Book Retrieve the Source Code

3-20

• specify the name of your library (or application)

• specify the list of source files going to it

• modify some preprocessor, compiler, etc. flags, if needed

• modify the set of additional libraries to link to it (if it's an application), if needed

For EXAMPLE:
new_project.sh foo app/basic

creates a model makefile Makefile.foo_app to build an application using tools and flags hard-
coded in $NCBI/c++/Debug/build/Makefile.mk, and headers from $NCBI/c++/include/. The file /
tmp/foo/foo.cpp is also created; you can either replace this with your own foo.cpp or modify its
sample code as required.

Now, after specifying the application name, list of source files, etc., you can just go to the
created working directory foo/ and build your application using:

make -f Makefile.foo_app

You can easily change the active version of NCBI C++ Toolkit by manually setting variable
$(builddir) in the file Makefile.foo_app to the desired Toolkit path, e.g., builddir =
$(NCBI)/c++/GCC-Release/build

Creating a New Project Inside the C++ Toolkit Tree
To create your new project (e.g., "bar_proj") directories in the NCBI C++ Toolkit CVS tree (assum-
ing that the whole NCBI C++ has been checked out to directory foo/c++/):
cd foo/c++/include && mkdir bar_proj && cvs add -m "Project Bar" bar_proj
cd foo/c++/src && mkdir bar_proj && cvs add -m "Project Bar" bar_proj

From there, you can now add and edit your project C++ files.
NOTE: remember to add this new project directory to the $(SUB_PROJ) list of the upper level

meta-makefile configurable template (e.g., for this particular case, to foo/c++/src/Makefile.in).

Template Source Files for New Modules
Projects in the NCBI C++ Toolkit are composed of "modules". In turn, a module is a basic logical
unit of organization for the source. Usually, each C++ module consists of 2 files:

• Header file(*.hpp) (see Box 2) -- API for the external users. Ideally, this file contains only
(well-commented) declarations and inline function implementations for the public interface.
No less, and no more.

• Source file(*.cpp) (see Box 3) -- Definitions of non-inline functions and internally used
things that should not be included to other modules.

Each and every source file must include NCBI disclamer and (preferably) CVS info. Then,
the header file must be protected from double-includes.

C++ Toolkit Book Retrieve the Source Code

3-21

The standard source templates *.hpp (see Box 2) and *.cpp (see Box 3) allow one to simply
cut-and-paste to start a new C++ file (just dont forget to replace the "framewrk" stubs by your new
module name). You may also use the samples checked out by new_project.sh as source file
templates.

Using CVS on MS Windows in NCBI

1. You can have a pre-installed CVS executable on your PC, for example in C:\WINNT
\System32\cvs.exe. If not, you can get it from \\DIZZY\coremake\public\bin\cvs.exe or \
\Basie\IEB\cvs.exe. You also can find its latest version at http://www.cyclic.com/. Just
copy it to C:\WINNT\System32\cvs.exe.

2. Create environment variable CVSROOT:

• Click the right mouse button on the icon of your PC "My Computer" (it is usually
situated in the upper left corner of the desktop), and then select "Properties" from
the popup menu.

• Form "System Properties" shows up. Here, choose tab "Advanced" and then press
the button "Environment Variables" (users of older NT systems may instead want
to choose tab "Environment"). Locate the part of the window titled "User Variables
for Yourname", and then click at the end of the list the line containing variable
TEMP.

• Press button "New...".

• Now, type CVSROOT in the text field "Variable Name", then type :pserver:

yourlogname@cvsvault.ncbi.nlm.nih.gov:/src/NCBI/vault.ncbi in the text field
"Variable Value". Here, the yourlogname stands for your NCBI account name with
all letter lowercased. For example, :pserver:vakatov@cvsvault.ncbi.nlm.nih.gov:/
src/NCBI/vault.ncbi. NOTE: In some cases, the .ncbi.nlm.nih.gov suffix needs to
be dropped.

• Press the button "OK" (or "Set"). The new variable CVSROOT and its value should

appear in the pane "User Variables for Yourname ".

• Apply the changes pressing "OK", "Apply", etc buttons until all popup windows
open in the previous steps closed.

• Logout, then login to your PC again.

3. Make sure you have your "home" directory set up -- i.e. pointed by the environment vari-
able HOMEPATH. In NCBI, HOMEPATH is usually set to /, which usually means U:\ or to

something like C:\Users\YourLoginName.

4. Create an empty file .cvspass in your "home" directory.

http://www.cyclic.com/

C++ Toolkit Book Retrieve the Source Code

3-22

5. Execute (exactly once!) the following command (you can do so by selecting "Run..." from
the main menu): cvs login You will be asked for a password -- enter the word

allowed. This command will record your login info in the .cvspass file (so you would not
have to login into CVS in the future, ever). If you get an authorization error, then send e-
mail with the errors to cpp-core.

6. Now you are all set and can use all usual CVS commands.

Using CVS on Mac OS in NCBI
The following topics are discussed in this section:

• Installing and Configuring MacCVS Pro

• Installing and Configuring maccvs (GNU CVS port)

Installing and Configuring MacCVS Pro

1. Download MacCVS Pro 2.7d3 (the latest release version as of 2001-03-05) from http://
sourceforge.net/projects/maccvspro.

2. Put the expanded folder somewhere appropriate, e.g. with other development tools.
Launch the MacCVS Pro application.

3. Create a new session document by choosing [File->New] and saving the document.

4. Choose [Edit->Session Settings...]:

• Checkout and Update Options

• Local Tree Directory: Click Set and choose a folder in which to check out a
CVS working directory.

• Merge Policy: Select Auto Merge Text Files and Update Binary Files.

• Remote Host Information

• CVS Server Settings

• Server Hostname: cvsvault.ncbi.nlm.nih.gov

• CVS Root: /src/NCBI/vault.ncbi

http://sourceforge.net/projects/maccvspro
http://sourceforge.net/projects/maccvspro

C++ Toolkit Book Retrieve the Source Code

3-23

• Authentication Method: Password

• CVS User Name: username

• CVS Password: allowed

• Messages and Misc.

• Message Output

• Checking Automatically clear message window is recommended,
though optional.

• Click OK.

. Choose [Action->Check Out Module...]. Enter the module name and click Check Out.

Installing and Configuring maccvs (GNU CVS port)

FTP Retrieval

• FTP Download Now [ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/]

• Available FTP Archives: Select the archive for your system. When the dialog box
appears, choose the destination in your filesystem for the downloaded archive. Note: With
some browsers, you may need to right-click-and-hold with your mouse and use the 'Save
Link As...', 'Copy to Folder...', or similar options from the drop-down menu to properly save
the archive. For a current list of the source code archives for different operating system/
compiler combinations consult the current Release Notes available at ftp://ftp.ncbi.nih.gov/
toolbox/ncbi_tools++/CURRENT/RELEASE_NOTES.html [ftp://ftp.ncbi.nih.gov/toolbox/
ncbi_tools++/CURRENT/RELEASE_NOTES.html]

• Unpack the Source Archive

• Unix SystemsThe Unix distributions have been archived using the standard tar
command and compressed using gzip. When unpacked, all files will be under the
directory ncbi_cxx, which will be created in the current directory.(Caution: If
ncbi_cxx already exists, tar extraction will overwrite existing files.)To unpack the the
archive:
gunzip -c ncbi_cxx_*.tar.gz | tar xvf -

ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/RELEASE_NOTES.html
ftp://ftp.ncbi.nih.gov/toolbox/ncbi_tools++/CURRENT/RELEASE_NOTES.html

C++ Toolkit Book Retrieve the Source Code

3-24

• Windows Systems The Microsoft Windows versions of the source distribution have
been prepared as self-extracting executables. By default a sub-folder ncbi_cxx will
be created in the current folder to contain the extracted source. If ncbi_cxx already
exists in the folder where the executable is launched, user confirmation is required
before files are overwritten.To actually perform the extraction, do one of the follow-
ing:

i. Double-click on the archive's icon to create ncbi_cxx in the current folder.

ii. Right-click on the archive's icon, and select 'Extract to...' to unpack the
archive to a user-specified location in the filesystem.

• Macintosh Systems The Macintosh version of the source distribution has been pre-
pared as a 'Stuff-It' archive, and is usable from within Metrowerks CodeWarrior. The
sources will be deployed to a directory ncbi_cxx created in the current folder.Further
Mac-specific details are forthcoming.

Source Tree Structure Summary
To summarize the Getting Started page, the source tree is organized as follows:

• The top-level has configuration files and the directories include/, src/, scripts/, compilers/
and doc/

• The src and include directories contain "projects" as subdirectories. Projects may contain
sub-projects in a hierarchical fashion.

• src/ additionally contains makefile and meta-makefile templates.

• Projects contain "modules" and various customized makefiles and meta-makefiles to con-
trol their compilation.

C++ Toolkit Book Retrieve the Source Code

3-25

Box 1: Usage

cvs_core.sh Usage
Usage: cvs_core.sh <dir> [--without-cvs] [--with-objects] [--<platform>]
Synopsis:
 Checkout a portable part of the NCBI C++ tree.
Arguments:
 <dir> -- path to checkout the tree to
 --without-cvs -- do not put CVS-related stuff to the resultant tree
 --with-objects -- generate ASN.1 serialization code in the "objects/" dir
 --without-objects -- do not even checkout "objects/" dirs
 --without-ctools -- do not checkout projects that depend on the C Toolkit
 --without-gui -- do not checkout projects that depend on the wxWindows
 --with-vc-cfgs[={all|inhouse|none}] -- multi-config MSVC project files
 --without-dizzy -- remove paths to \\DIZZY\ from MSVC project files
 --<platform> -- "--unix", "--msvc", "--cygwin", "--mac", "--all"
Default:
 cvs_core.sh <dir> --with-cvs --with-ctools --with-gui --all
Note: Must specify target directory (name cannot start with '-')

import_project.sh Usage
USAGE: import_project.sh <cvs_tree_path> [builddir]
SYNOPSIS:
 Retrieve project (and all sub-projects) located in the NCBI C++ Toolkit
 CVS tree at:
 internal/c++/src/<cvs_tree_path>
 internal/c++/include/<cvs_tree_path>
 Create makefiles "Makefile.*_{lib,app}" (based on the original project
 makefiles "Makefile.*.{lib,app}") to build libs/apps using pre-built NCBI
 C++ Toolkit from [builddir] (default: /netopt/ncbi_tools/c++/Debug/build);
also create
 top-level makefiles "Makefile" from "Makefile.in".
LIMITATIONS:
 - Supports only very basic substitutions in Makefile.in.
 - May produce bogus library search paths.

new_project.sh Usage
USAGE: new_project.sh <name> <type> [builddir]
SYNOPSIS:
 Create a model makefile "Makefile.<name>_<type>" to build
 a library or an application that uses pre-built NCBI C++ toolkit.
 Also include sample code when creating applications.
ARGUMENTS:
 <name> -- name of the project (will be subst. to the makefile name)
 <type> -- one of the following:
 lib to build a library

C++ Toolkit Book Retrieve the Source Code

3-26

 app[/basic] to build a simple application
 app/cgi to build a CGI or FastCGI application
 app/objects to build an application using ASN.1 objects
 app/objmgr to build an application using the object manager
 [builddir] -- path to the pre-built NCBI C++ toolkit
 (default = /netopt/ncbi_tools/c++/Debug/build)

update_core.sh Usage
Usage: update_core.sh [--no-projects] [--help] [<dirs>]
 --no-projects: Do not update Windows/MacOS project files.
 --help: Print this message.
 <dirs>: The list of subdirectories to update; "." updates the files in the
 top-level directory. If no directories are specified, the default list is
 . compilers doc include scripts src

update_projects.sh Usage
Usage: update_projects.sh <project-list> [<directory>]
This script supports two modes of operation:
 * If you specify a directory name, it will create the directory if
 necessary and check the specified portion of the C++ tree out into
 it, along with any additional infrastructure needed for the build
 system to work. (If the directory already exists, it must be
 empty.) It will then optionally configure and build the new tree.
 * If you run it from the top level of an existing checkout of the
 C++ source tree, it will update the sources and headers for the
 specified projects. It will then optionally reconfigure and
 rebuild the tree.
The syntax for project lists is documented at:
http://www.ncbi.nlm.nih.gov/IEB/ToolBox/CPP_DOC/config.html#ref_ProjectListIn
either mode, if contains neither a directory nor an
extension, the script will add the extension .lst and look in the
system directory ".../c++/scripts/internal/projects".

C++ Toolkit Book Retrieve the Source Code

3-27

Box 2: Source File Template (.hpp)

#ifndef FRAMEWRK__HPP
#define FRAMEWRK__HPP

/* $Id: ch_getcode.xml,v 1.45 2004/03/23 16:57:09 siyan Exp $
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* Author: !!! PUT YOUR NAME(s) HERE !!!
*
* File Description:
* !!! PUT YOUR DESCRIPTION HERE !!!
*
*/

#include <corelib/ncbistd.hpp>
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// !!! PUT YOUR OTHER #include's HERE !!!
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

// (BEGIN_NCBI_SCOPE must be followed by END_NCBI_SCOPE later in this file)
BEGIN_NCBI_SCOPE

// !!
// !!! PUT YOUR CODE(PROTOTYPES, TYPEDEFS, ETC.) HERE !!!
// !!

C++ Toolkit Book Retrieve the Source Code

3-28

// !!!
// !!! FINALLY, IMPLEMENT YOUR INLINE FUNCTIONS HERE !!!
// !!!

// (END_NCBI_SCOPE must be preceded by BEGIN_NCBI_SCOPE)
END_NCBI_SCOPE

#endif /* FRAMEWRK__HPP */

C++ Toolkit Book Retrieve the Source Code

3-29

Box 3: Source File Template (.cpp)

/* $Id: ch_getcode.xml,v 1.45 2004/03/23 16:57:09 siyan Exp $
* ===
*
* PUBLIC DOMAIN NOTICE
* National Center for Biotechnology Information
*
* This software/database is a "United States Government Work" under the
* terms of the United States Copyright Act. It was written as part of
* the author's official duties as a United States Government employee and
* thus cannot be copyrighted. This software/database is freely available
* to the public for use. The National Library of Medicine and the U.S.
* Government have not placed any restriction on its use or reproduction.
*
* Although all reasonable efforts have been taken to ensure the accuracy
* and reliability of the software and data, the NLM and the U.S.
* Government do not and cannot warrant the performance or results that
* may be obtained by using this software or data. The NLM and the U.S.
* Government disclaim all warranties, express or implied, including
* warranties of performance, merchantability or fitness for any particular
* purpose.
*
* Please cite the author in any work or product based on this material.
*
* ===
*
* Author: !!! PUT YOUR NAME(s) HERE !!!
*
* File Description:
* !!! PUT YOUR DESCRIPTION HERE !!!
*
* ===
*/

#include <corelib/ncbistd.hpp>
#include <foo_proj_dir/framewrk.hpp>
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
// !!! PUT YOUR OTHER #include's HERE !!!
// !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!

// This is to use the ANSI C++ standard templates without the "std::" prefix
// NCBI_USING_NAMESPACE_STD;

// This is to use the ANSI C++ standard templates without the "std::" prefix
// and to use NCBI C++ entities without the "ncbi::" prefix
// USING_NCBI_SCOPE;

// (BEGIN_NCBI_SCOPE must be followed by END_NCBI_SCOPE later in this file)
BEGIN_NCBI_SCOPE

C++ Toolkit Book Retrieve the Source Code

3-30

// !!!!!!!!!!!!!!!!!!!!!!!!!!
// !!! PUT YOUR CODE HERE !!!
// !!!!!!!!!!!!!!!!!!!!!!!!!!

// (END_NCBI_SCOPE must be preceded by BEGIN_NCBI_SCOPE)
END_NCBI_SCOPE

